
   

Towards A Better SCM:
Revlog and Mercurial

Matt Mackall
Selenic Consulting
mpm@selenic.com



   

Things To Consider When 
Building A New SCM



   

Things To Consider When 
Building A New SCM

● Scalable



   

Things To Consider When 
Building A New SCM

● Scalable

● Atomic



   

Things To Consider When 
Building A New SCM

● Scalable

● Atomic

● Decentralized



   

Things To Consider When 
Building A New SCM

● Scalable

● Atomic

● Decentralized

● Convenient Branching



   

Things To Consider When 
Building A New SCM

● Scalable

● Atomic

● Decentralized

● Convenient Branching

● Repeated Merge



   

Things To Consider When 
Building A New SCM

● Scalable

● Atomic

● Decentralized

● Convenient Branching

● Repeated Merge

● Robust Storage



   

Things To Consider When 
Building A New SCM

● Scalable

● Atomic

● Decentralized

● Convenient Branching

● Repeated Merge

● Robust Storage

● Easy to Use



   

Things To Consider When 
Building A New SCM

● Scalable

● Atomic

● Decentralized

● Convenient Branching

● Repeated Merge

● Robust Storage

● Easy to Use

● Portable



   

Early History Of Mercurial



   

Early History Of Mercurial

● April 6, 2005: Bitmover announces end of 
gratis version of Bitkeeper



   

Early History Of Mercurial

● April 6, 2005: Bitmover announces end of 
gratis version of Bitkeeper
Linus mentions he's looking at alternatives



   

Early History Of Mercurial

● April 6, 2005: Bitmover announces end of 
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial



   

Early History Of Mercurial

● April 6, 2005: Bitmover announces end of 
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial
Linus starts working on Git



   

Early History Of Mercurial

● April 6, 2005: Bitmover announces end of 
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial
Linus starts working on Git

● April 8: Linus releases initial nearly useless Git 
snapshot



   

Early History Of Mercurial

● April 6, 2005: Bitmover announces end of 
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial
Linus starts working on Git

● April 8: Linus releases initial nearly useless Git 
snapshot

● April 19: Mercurial 0.1 released
features: familiar interface, efficient storage, 
commit/checkout/clone/pull/merge



   

Early History Of Mercurial

● April 6, 2005: Bitmover announces end of 
gratis version of Bitkeeper
Linus mentions he's looking at alternatives
I start working on Mercurial
Linus starts working on Git

● April 8: Linus releases initial nearly useless Git 
snapshot

● April 19: Mercurial 0.1 released
features: familiar interface, efficient storage, 
commit/checkout/clone/pull/merge

● April 20: Linus fails to destroy Git in a timely 
fashion



   

Desirable Properties For 
Revision Storage



   

Desirable Properties For 
Revision Storage

● O(1) addition and retrieval



   

Desirable Properties For 
Revision Storage

● O(1) addition and retrieval

● immutable or append-only



   

Desirable Properties For 
Revision Storage

● O(1) addition and retrieval

● immutable or append-only

● decent compression



   

Desirable Properties For 
Revision Storage

● O(1) addition and retrieval

● immutable or append-only

● decent compression

● strong integrity checks



   

Desirable Properties For 
Revision Storage

● O(1) addition and retrieval

● immutable or append-only

● decent compression

● strong integrity checks

● cluster file changes together on disk



   

Desirable Properties For 
Revision Storage

● O(1) addition and retrieval

● immutable or append-only

● decent compression

● strong integrity checks

● cluster file changes together on disk

● efficient logging and annotate



   

Revlogs



   

Changesets, Manifests, and 
Files



   

Transactions and Rollback



   

Transactions and Rollback

● Every repository write is protected by a simple 
transaction log



   

Transactions and Rollback

● Every repository write is protected by a simple 
transaction log

● The log records the starting length of each 
revlog touched



   

Transactions and Rollback

● Every repository write is protected by a simple 
transaction log

● The log records the starting length of each 
revlog touched

● On abort, each revlog is truncated to its 
original length



   

Transactions and Rollback

● Every repository write is protected by a simple 
transaction log

● The log records the starting length of each 
revlog touched

● On abort, each revlog is truncated to its 
original length

● We save the most recent transaction log to 
allow manual rollback (“undo”)



   

Synchronization and Merging



   

Taking Advantage of the FS



   

Taking Advantage of the FS

● Avoiding seeks is critical for performance



   

Taking Advantage of the FS

● Avoiding seeks is critical for performance

● Traversal order matters!



   

Taking Advantage of the FS

● Avoiding seeks is critical for performance

● Traversal order matters!

● Ordering by hash means random seeking in the 
working directory and degrades to random 
seeking on copy



   

Taking Advantage of the FS

● Avoiding seeks is critical for performance

● Traversal order matters!

● Ordering by hash means random seeking in the 
working directory and degrades to random 
seeking on copy

● Ordering by modification time degrades to 
random seeking over time



   

Taking Advantage of the FS

● Avoiding seeks is critical for performance

● Traversal order matters!

● Ordering by hash means random seeking in the 
working directory and degrades to random 
seeking on copy

● Ordering by modification time degrades to 
random seeking over time

● Ordering by pathname is stable and gives 
largely monotonic head movement



   

Some Other Optimizations



   

Some Other Optimizations

● Mercurial uses a custom delta algorithm 



   

Some Other Optimizations

● Mercurial uses a custom delta algorithm 

● Applying long chains of deltas is clever



   

Some Other Optimizations

● Mercurial uses a custom delta algorithm 

● Applying long chains of deltas is clever

● Careful ordering avoids locking for most 
operations



   

Some Other Optimizations

● Mercurial uses a custom delta algorithm 

● Applying long chains of deltas is clever

● Careful ordering avoids locking for most 
operations

● Local clones use copy-on-write



   

Some Other Optimizations

● Mercurial uses a custom delta algorithm 

● Applying long chains of deltas is clever

● Careful ordering avoids locking for most 
operations

● Local clones use copy-on-write

● Remote clone uses recompression for WAN 
transmission



   

Some Other Optimizations

● Mercurial uses a custom delta algorithm 

● Applying long chains of deltas is clever

● Careful ordering avoids locking for most 
operations

● Local clones use copy-on-write

● Remote clone uses recompression for WAN 
transmission

● Network protocol uses graph discovery 
algorithm for efficiency



   

A Benchmark



   

A Benchmark

● commit 773 patches (20MB) for 2.6.18-rc1 to 
-mm2



   

A Benchmark

● commit 773 patches (20MB) for 2.6.18-rc1 to 
-mm2

● 1.8GHz AMD64 laptop, 1.2GB of RAM
freshly formatted ext3 filesystem, 
data=writeback,noatime



   

A Benchmark

● commit 773 patches (20MB) for 2.6.18-rc1 to 
-mm2

● 1.8GHz AMD64 laptop, 1.2GB of RAM
freshly formatted ext3 filesystem, 
data=writeback,noatime

● Git 1.4.1:
$ gitquiltimport 2.6.18rc1mm2
real: 2m7.701s user: 1m15.953s sys: 0m30.186s



   

A Benchmark

● commit 773 patches (20MB) for 2.6.18-rc1 to 
-mm2

● 1.8GHz AMD64 laptop, 1.2GB of RAM
freshly formatted ext3 filesystem, 
data=writeback,noatime

● Git 1.4.1:
$ gitquiltimport 2.6.18rc1mm2
real: 2m7.701s user: 1m15.953s sys: 0m30.186s

● Mercurial:
$ hg qpush a 2.6.18rc1mm2
real: 1m18.398s user: 0m42.511s sys: 0m10.105s



   

Mercurial Wiki:
http://selenic.com/mercurial


